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The shift equations iteration (SEI) solves the n-level
quantum scattering problem in one dimension, i.e., the close-
coupled equations, free from exponential instability arising
from closed channels. SEI provides exponential-instability-
free transmission and reflection coefficients, and is well
suited to two-sided scattering problems such as conduction
in molecular wires. Our most efficient implementation of
SEI utilizes an adaptation of the log-derivative symplectic
integrator described by Manolopoulos and Gray in (J Chem
Phys 102:9214, 1995). The two-level nonadiabatic tunneling
system is investigated—in the tunneling regime, above the
barrier, and at resonance. Nonadiabatic components in the
upper channel wavefunction (and lower channel wavefunc-
tion at resonance energies) are found to be non-adiabatic,
i.e., not describable by WKB functions. Their behavior is
characterized in terms of an empirical model relating these
components to adiabatic components in the lower (upper)
channel and the potential energy coupling.

1 Introduction

We present a new numerical method, which we term the
shift equations iteration (SEI), for solving the n-level quan-
tum scattering problem in one dimension, i.e., the close-
coupled equations.1 It is based on the WKB representation
of the first-order form of the Schrödinger equation, and is
constructed so as to circumvent the well-known exponential

1 Molecular dynamics theory and experiment are reviewed in [1].
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instability arising from closed channels [2–6]. As such, the
method competes directly with the log-derivative method
[7–10], the de facto standard for integration of close-coupled
equations.

Atomic and molecular collision systems provide many
examples of n-level quantum scattering in one dimension.2

The n-levels could be electronic states, and/or vibrational
levels of coordinates orthogonal to the reaction coordinate.
Molecular collisions can be treated as one-dimensional
systems through the use of hyperspherical coordinates.
Examples of such computations include F + H2 reactive scat-
tering [12], related F + D2 studies [13] (a review of the F +
H2 reaction is provided by Manolopoulos [14]), and collin-
ear treatments of D + H2 reactivity [15] and CO2 photodis-
sociation [16]. References [12,16] use the original Johnson
[7] log-derivative method, Ref. [13] uses the constant refer-
ence potential log-derivative method of Manolopoulos [10],
while Ref. [15] uses the R-matrix method [3,4]. The latter
method is subject to exponential instability when there are
closed channels. In Ref. [16], the close-coupled equations
treat an electronic excited state in addition to the vibrational
states orthogonal to the reaction coordinate, i.e., the level
index includes the electronic state label and the orthogonal
vibrational state label. An example of a collision system with
account of an electronic excited state is provided by the Ref.
[17] study of H + N+

2 .
The reaction coordinate in all of the above examples is

a radial coordinate. As such, all of the scattering processes
these studies investigate appear as multi-channel reflection
processes. In this article, the focus is on two-sided scatter-
ing systems, such as the model for HN3 decomposition in
Ref. [6], with reflection and transmission processes. Two-
sided one-dimensional scattering is a paradigm of molecular

2 An excellent introduction to molecular scattering is found in [11].
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electronics [18–20] and quantum wires [19].3 Conduction
through a nanodevice is treated as a two-sided scattering
problem in terms of the Landauer formula [22,23]. It is for
two-sided scattering systems that the shift equations itera-
tion offers potential advantage over log-derivative methods.
It is explained in Sect. 4 how log-derivative methods gener-
ally provide only reflection coefficients free of exponential
instability. Transmission coefficients are provided in terms
of the wavefunction matrix, or its equivalent, and as such
are subject to exponential instability. Nevertheless, Ref [6].
provides a method which limits the exponential instability
to exponential decay and demonstrates the method’s efficacy
for a two level two-sided scattering system. It is not clear
how robust the algorithm is in general. We have used it to
compute accurate transmission coefficients for three and four
level systems [24]. However, it does not appear to provide
accurate wavefunction closed channel components. A niche
for SEI might be detailed studies of closed channel wave-
function components—such as provided below in Sect. 3.3.
Closed channel components are of interest because they are
associated with classically forbidden processes and intrinsi-
cally quantum phenomena.

The shift equations iteration—derived in Sects. 2 and 3—
breaks propagation across the one-dimensional interval into
smaller steps such that exponential growth is manageable
for each step. It is shown below that, if the steps are not
too large, SEI suppresses the accumulation of exponential
growth from one step to the next. The rate of convergence
of SEI is governed by the accuracy of the underlying inte-
grator used to propagate between neighboring grid points.
SEI does not prescribe the underlying integrator. As such,
SEI can be combined with any number of existing inte-
grators—either log-derivative integrators normally used to
propagate across the entire interval—or other first-order (or
adapted second-order) differential equation integrators. The
latter are generally subject to exponential instability and can-
not otherwise be used to propagate across the entire interval.
However, we see, in Sect. 4, that when combined with SEI,
these integrators can provide useful, stable computation of
the scattering wavefunctions. Nevertheless, our best results,
i.e., fastest convergence, are obtained for SEI in combination
with the log-derivative form [25] of the fifth-order symplec-
tic integrator of McLachlan and Atela [26]. Manolopoulos
and Gray [25] describe the symplectic character of the first-
order form of the radial Schrödinger equation and its conse-
quences—specifically, the existence of a set of phase space
integral invariants of Poincaré. A symplectic integrator, such
as that provided in Ref. [26], exactly conserves (to within

3 Some recent electronic structure computations for semiconductor
quantum dots and wires are provided in Ref. [21].

rounding error) all of the integral invariants. This signifi-
cantly improves the reliability of such methods over non-
symplectic approaches. However, Manolopoulos and Gray
also show that symplectic symmetry is implicitly incorpo-
rated into many existing methods. Nevertheless, we adopt
the fifth-order integrator of Ref. [25] because it is easy to
program, in addition to being very reliable. We have not
combined SEI with any other existing log-derivative
methods.

In Sect. 4, the classic two-level nonadiabatic tunneling
problem [27] is re-visited. First, we demonstrate the efficacy
of SEI together with the fifth order log-derivative
symplectic integrator of Ref. [25] (in the tunneling, and above
barrier regimes). Then, we investigate the observed reflec-
tion and transmission probabilities, and associated wave-
functions. Complete reflection, as described in Ref. [29], is
observed exactly at resonance. Specifically, with the reso-
nance energy determined to within double precision accu-
racy, transmission probability is computed to be at or below
10−20. Nakamura [29] highlights this phenomenon and pro-
poses a molecular switching device based on the effect.
Specifically, if the avoided crossing is loose, the transmis-
sion probability switches rapidly from near 100 to 0 % as
energy is scanned across a resonance. Controlling the energy
of the transmitting particle (e.g. an electron), within a narrow
range, controls with near certainty whether the particle will
transmit or not.

Another interesting phenomenon observed is the form of
the upper channel wavefunction at non-resonant energies.
Specifically, the closed channel component of the wavefunc-
tion is found to be non-adiabatic—its decay heading into
asymptotic regions is much slower than the fall-off of the
corresponding WKB function. These non-adiabatic upper
channel wavefunctions are empirically modeled by the lower
channel wavefunction weighted with the potential energy
coupling (or a variation thereof) in diabatic representation.
The non-resonant upper channel wavefunction persists at
resonant energies, in superposition with the resonant wave-
function—the pseudo-bound state in the upper channel well.
While the former component of the wavefunction is gener-
ally quite small, it can be quite broad—in fact, much more
so than one might expect from the viewpoint of the adiabatic
(i.e., WKB) approximation wherein the tails of the upper
channel wavefunction decay much faster than is observed.
The unexpected broad base character of the upper chan-
nel wavefunctions might play a role in, for example, the
interaction of neighboring avoided crossings in subsequent
applications.

In Sect. 2, we review the n-level system and the first-order
form of the Schrödinger equation. These equations are trans-
formed to adiabatic representation, and then to WKB repre-
sentation as in Ref. [30] which treats the simple one-level
system.
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2 The n-level system WKB representation

We consider an n-level system initially in “diabatic represen-
tation”. The system wavefunction is an n component vector
function, � (x), of the “reaction coordinate”, x , subject to a
Hamiltonian of the form,

Ĥ = −h̄2

2m

d2

dx2 1+V (x). (1)

The kinetic energy matrix is isotropic and diagonal, in dia-
batic representation. 1 is the n × n identity matrix. Coupling
between levels is manifest in the off-diagonal elements of
the potential matrix, V (x). In general, the potential matrix is
complex symmetric (real symmetric on the real x axis), and
is diagonalized by orthogonal transformation,

Z−1 (x)V (x)Z (x) = v (x).

Z (x) is orthogonal for all x . We adopt the convention that
the eigenvalues—the elements of v (x)—appear in ascending
order for real x . The non-crossing rule [31] (we assume that
V (x) is irreducible) for eigenvalues ensures that this order
is maintained for all real x if it is imposed for one real x .

The WKB approximation to the solutions of the above
time-independent Schrödinger equation arises naturally as
an adiabatic approximation in the limit of slowly varying
V (x) [32]. This approximation is conveniently derived via
the first-order form of the Schrödinger equation,

(
� (x)
� ′ (x)

)′
=

(
0 1

−P2 (x) /h̄2 0

) (
� (x)
� ′ (x)

)
. (2)

The prime superscript here denotes derivative with respect
to x , and

P2 (x) = 2m
[
E1 − V (x)

]
is the square momentum matrix in diabatic representation.
As in the derivation of the WKB representation for a one-
level system (n = 1) [30], we introduce the transformation
to adiabatic representation,
(
� (x)
� ′ (x)

)
=

(
Z (x) Z (x)

iP (x)Z (x) /h̄ −iP (x)Z (x) /h̄

) (
ψ+ (x)
ψ− (x)

)
.

The ψ± (x) representation defined by this transformation is
adiabatic in the sense that its components correspond to right
and left-going motions in specific adiabatic levels. In the limit
of slow variation of P (x) and Z (x), transitions between lev-
els and between right and left-going motion vanish and the
equations for the components of ψ+ (x) and ψ− (x) become
separable, varying independently. In terms of the diagonal
adiabatic momentum matrix, p (x) = Z−1 (x)P (x)Z (x),
the transformations between adiabatic and diabatic represen-
tations take the form,

(
� (x)
� ′ (x)

)
=

(
Z (x) Z (x)

iZ (x) p (x) /h̄ −iZ (x) p (x) /h̄

) (
ψ+ (x)
ψ− (x)

)

(3)

and(
ψ+ (x)
ψ− (x)

)
= 1

2

(
Z−1 (x) −ih̄p−1 (x)Z−1 (x)
Z−1 (x) ih̄p−1 (x)Z−1 (x)

) (
� (x)
� ′ (x)

)
.

The spectral theorem [33] ensures that the orthogonal trans-
formation diagonalizing V (x) also diagonalizes any function
of V (x), such as P (x).

Substitution of Eq. (3) into Eq. (2) gives the equation for
the wavefunction in adiabatic representation [32];

(
ψ+ (x)
ψ− (x)

)′

=
(

ip/h̄ − p−1p′/2 0
0 −ip/h̄ − p−1p′/2

) (
ψ+ (x)
ψ− (x)

)

−1

2

(
D + p−1Dp D − p−1Dp − p−1p′

D − p−1Dp − p−1p′ D + p−1Dp

)

×
(
ψ+ (x)
ψ− (x)

)
, (4)

where

D (x) = Z−1 (x)Z′ (x) = ZT (x)Z′ (x)

is the antisymmetric (and consequently off-diagonal) non-
adiabatic transition matrix. Antisymmetry of D (x) follows
from differentiation of ZT (x)Z (x) = 1. In Eq. (4), and else-
where as required, the x dependencies in the matrices on the
right are suppressed to make the equation more readable.

At this stage it is worth noting that the transformation to
adiabatic representation is essential to the formulation of the
shift equations iteration. In adiabatic representation, the left
and right-going motions appear as separate components of
the system state. In the case of a “seed” wave incoming from
the left, the right-going component is specified on the left,
while the left-going component is specified on the right—the
latter is identically zero. These boundary conditions are not
well suited to the more familiar Schrödinger representation
of Eq. (2). While it is possible to formulate the shift equations
iteration in terms of the adiabatic representation of Eq. (4), it
is desirable to go a step further and introduce the n-level sys-
tem WKB representation. In this representation, variation in
the system state components arises entirely from the break-
down of adiabaticity. This circumstance is convenient for the
purpose of demonstrating, via argument, the stability of the
associated shift equations iteration—see Sect. 3.3. Construc-
tion of the WKB representation begins with consideration of
the adiabatic approximation.

The adiabatic approximation (or the generalization of
the WKB approximation to the n level system) is given by
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neglecting the couplings between ψ+ (x) and ψ− (x) in the
above equation. The result isψ± (x) ∼= ϕ± (x), where ϕ± (x)
is the solution to the separable equations,

ϕ′± (x) =
[
± ip (x) /h̄ − p−1 (x) p′ (x) /2

]
ϕ± (x) ;

(5)
ϕ± (x) = [± p (x)

]−1/2 exp [± iw (x) /h̄],

where

w (x) =
x∫

x0

dx ′ p
(
x ′),

is the vector of adiabatic actions, defined with respect to
some reference point, x0. p (x) is the vector of adiabatic
momenta—the diagonal elements of p (x). Note that the
exponentiation and vector function multiplication appearing

in Eq. (5) are understood here on a component-by-component
basis. Also note the unconventional inclusion of the minus
sign in the prefactor of ϕ− (x)—equivalently,

ϕ± (x) = −i
[
p (x)

]−1/2 exp [−iw (x) /h̄].

This convention will be useful in a subsequent publication.
The WKB representation of the Schrödinger equation is

obtained using WKB wavefunctions as basis functions. The
Schrödinger equation becomes a first-order linear differen-
tial equation for the associated expansion coefficients which
provide corrections to the WKB approximation, i.e., varia-
tion in the expansion coefficients.

Let(
ψ+ (x)
ψ− (x)

)
=

(
c+ (x) ϕ+ (x)
c− (x) ϕ− (x)

)
, (6)

where the vector multiplication is on a component-by-com-
ponent basis. Substituting Eq. (6) into Eq. (4) gives(

c′+ (x) ϕ+ (x)
c′− (x) ϕ− (x)

)
+

(
c+ (x) ϕ′+ (x)
c− (x) ϕ′− (x)

)

=
(

ip/h̄−p−1p′/2 0

0 −ip/h̄−p−1p′/2

) (
c+ (x) ϕ+ (x)
c− (x) ϕ− (x)

)

−1

2

(
D + p−1Dp D − p−1p′ − p−1Dp

D − p−1p′ − p−1Dp D + p−1Dp

)

×
(

c+ (x) ϕ+ (x)
c− (x) ϕ− (x)

)
. (7)

Here, the second term on the left together with the first term
on the right constitute the equations for the adiabatic approxi-

mation, weighted by multiplicative coefficients, c± (x).
These terms cancel leaving(

ϕ+ (x) c′+ (x)
ϕ− (x) c′− (x)

)

= −1

2

(
D + p−1Dp D − p−1p′ − p−1Dp

D − p−1p′ − p−1Dp D + p−1Dp

)

×
(
ϕ+ (x) c+ (x)
ϕ− (x) c− (x)

)
. (8)

In this last line, we re-express component-by-component
vector multiplication as the equivalent diagonal matrix vec-
tor multiplication, where the diagonal matrix consists of the
elements of one of the vectors. Specifically, c± (x) ϕ± (x) =
ϕ± (x) c± (x), where ϕ± (x) is the diagonal matrix constru-
cted from the components of ϕ± (x). We now have

(
c+ (x)
c− (x)

)′
= −1

2

(
ϕ−1+

[
D + p−1Dp

]
ϕ+ ϕ−1+

[
D − p−1p′ − p−1Dp

]
ϕ−

ϕ−1−
[
D − p−1p′ − p−1Dp

]
ϕ+ ϕ−1−

[
D + p−1Dp

]
ϕ−

)
×

(
c+ (x)
c− (x)

)
, (9)

or more compactly,

c′ (x) = A (x) c (x). (10)

The components of the strictly off-diagonal transition matrix,
A (x), are given by

A j ′+, j+ (x)

= −1

2
exp

(
i
[
w j (x)− w j ′ (x)

]
/h̄

)

×
[(

p j ′ (x)

p j (x)

)1/2

+
(

p j (x)

p j ′ (x)

)1/2
]

D j ′, j (x) (11)

and

A j ′−, j+ (x)

= −1

2
exp

(
i
[
w j (x)+ w j ′ (x)

]
/h̄

)

×
[(−p j ′ (x)

p j (x)

)1/2

−
(

p j (x)

−p j ′ (x)

)1/2
]

D j ′, j (x) (12)

for level indices j and j ′ �= j , and

A j−, j+ (x) = 1

2
exp

(
2iw j (x) /h̄

)
p−1

j (x)
d

dx
p j (x), (13)

for j ′ = j . D j ′, j (x) is given by

D j ′, j (x) =
∑

j ′′
Z−1

j ′, j ′′ (x)
d

dx
Z j ′′, j (x)

=
∑

j ′′
Z j ′′, j ′ (x)

d

dx
Z j ′′, j (x).

If the variations in the eigenvectors of V (x), the adiabatic lev-
els, are expanded in terms of the eigenvectors themselves, the
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resulting expansion coefficients are provided by the columns
of D (x). The absence of diagonal elements is a consequence
of normalization of the eigenvectors. In the case of unnormal-
ized eigenvectors, diagonal elements in D (x) would appear,
accounting for variation in the eigenvector norms.

3 The shift equations iteration method

Numerical solution of the Schrödinger equation for an
n-level system appears to be relatively straightforward on
the surface. For example, there are many methods available
for local solution of the coupled differential equations in
first- or second-order form. It is then simply a matter of sat-
isfying the appropriate boundary conditions. For example,
one can express the state at one boundary via propagation
of the state at the other boundary. The resulting equation is
then rearranged, see below, so that the specified portion of
the boundary states (the boundary conditions) are isolated
on one side of the equation, while the unknown portions of
these states appear on the other side. The trouble with this
approach is that when there are closed channels, there are
exponentially growing and decaying solutions. The former
dominate states propagated over any significant distance. The
propagator from one boundary to the other becomes highly
skewed, reflecting the collapse of propagating states towards
the direction of maximum exponential growth. The system of
equations arising when one imposes the boundary conditions
is correspondingly ill conditioned. In any case, the presence
of exponentially large terms in the computation leads to sig-
nificant rounding errors.

Here, we develop an integration approach which addresses
the exponential instability arising when there are closed chan-
nels. We have found that it is generally not possible to impose
boundary conditions directly in terms of integration from
one asymptotic region to another, i.e., except via a log-deriv-
ative approach. However, it is possible to match boundary
conditions over smaller intervals. By expressing the match-
ing of global boundary conditions in terms of the simulta-
neous matching of boundary conditions across a sequence
of smaller intervals, the matrix ill-conditioning arising from
the exponential instability is circumvented. Specifically, a
sequence of points is considered, x0 = xleft, x1, . . . , xN =
xright, such that xleft and xright are in the asymptotic regions
on opposite sides of the interaction region. This formula-
tion is suited to a Cartesian variable, x , and a set of poten-
tials which admit transmission and reflection processes in
the presence of closed channels, i.e., not just a radial coor-
dinate for which only reflection processes are possible. Such
systems are more demanding because integration both into
and out-of a region with closed channels cannot be avoided
[6]. In the case of a radial coordinate, all channels are closed
on the left and the incoming seed wave must be incoming

on the right. Here, we consider an incoming seed from the
left. Thus, if one wished to consider a radial coordinate, the
method described below would follow with right and left
interchanged.

The idea is to simultaneously map x j to x j+1, for
j = 0, . . . , N −1. With this approach, the Schrödinger equa-
tion is integrated only between neighboring points—there
is no global integration across the entire interval for which
the mapping is highly skewed. However, the system state is
required at many points simultaneously. The system of equa-
tions resulting when boundary conditions are imposed is of
order 2nN , as opposed to the order 2n obtained if boundary
conditions are imposed by mapping across the entire interval.
It would seem, e.g., if we used a general system of equations
solver—that the resulting algorithm would have O

(
n3 N 3

)
operations. As such, the advantage of this small interval inte-
gration method is apparently lost—note that simply integrat-
ing across the interval has many fewer operations, O

(
n3 N

)
.

However, because the system of equations is banded, the
method can be formulated to be linear in the number of steps,
N , across the interval, and thus have no scaling disadvantage,
i.e., SEI is also an O

(
n3 N

)
method.

3.1 Matching boundary conditions via shift equations

Consider the mapping from x j to x j+1 with the system state
expressed in WKB representation,
(

c( j+1)
+

c( j+1)
−

)
=

(
F( j+1)

++ F( j+1)
+−

F( j+1)
−+ F( j+1)

−−

) (
c( j)
+

c( j)
−

)
.

As written, this is the solution to Eq. (10) determined by some
numerical integration from x j to x j+1 (see below). However,
because of the appearance of large exponential factors in
the transition matrix elements connecting from closed chan-
nels (i.e., F( j+1)

·,closed), it is better to work with Eq. (10) with
all exponential factors in transition elements left out. This
corresponds to a local WKB representation with the expo-
nential behavior of the adiabatic solutions incorporated into
the expansion coefficients. In this case, the basis functions
consist only of the pre-exponential reciprocal square root
momentum factors. In addition to eliminating unnecessary
exponentially large transition elements, this alternate repre-
sentation removes complications surrounding the choice of
the reference point, x0—specifically, it is always the current
point x . We adopt local WKB representation henceforth with
no change in notation. With this convention, the coefficients
c± (x) vary according to the exponential factors of the WKB
functions, in the adiabatic limit, i.e., as opposed to being
constant in this limit.

The set of all x j to x j+1 maps, for j = 0 to N − 1, can
be combined into a single larger matrix equation which we
term the shift equations,
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(1)+
c(1)−
c(2)+
c(2)−
...

c(N )+
c(N )−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F(1)++ F(1)+−
F(1)−+ F(1)−−

F(2)++ F(2)+−
F(2)−+ F(2)−−

. . .

F(N )++ F(N )+−
F(N )−+ F(N )−−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(0)+
c(0)−
c(1)+
c(1)−
...

c(N−1)
+

c(N−1)
−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (14)

Here and below, we adopt the convention of making explicit
only the non-zero portions of matrices (unless it is conve-
nient to do otherwise). Thus, the unspecified portions of the
above matrix consist only of zero elements.

At the boundaries, the system states are partially speci-
fied. For example, c(0)+ is the incoming portion of the state

on the left. Typically, c(0)+ is a unit vector with component
1 associated with one of the open channels on the left. The
other specified boundary condition is c(N )− = 0, which cor-
responds to no incoming, or exponentially growing, com-

ponents on the right. The components, c(0)− and c(N )+ , are
unknowns to be determined by connecting the boundary con-
ditions via the shift equations. In the case of open channel
components, they consist of the reflection and transmission
coefficients, respectively. Note that the case of a radial coor-
dinate is also treated—with the understanding that left and
right are interchanged (+ and −, i.e., left and right-going
motions, would also be interchanged). In the case of a radial
coordinate, r , all channels are closed at rN , the smallest r
value. The unknown coefficients there, c(N )− , are exponen-
tially small—the minus coefficients in local WKB represen-
tation decay exponentially to the left.

The key to the shift equations approach is to recast Eq.
(14) such that the known parts of the boundary conditions
are on one side of the equations, while the unknown parts are
on the other side. To this end, we note that the first term on
the left of Eq. (14) can be expressed in the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(1)+
c(1)−
c(2)+
c(2)−
...

c(N )+
c(N )−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
...

c(N )+
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

1 0
0 1

...
. . .

...
1 0
0 1

0
0

· · · · · · 0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(0)−
c(1)+
c(1)−
...

c(N−1)
+

c(N−1)
−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15)

Here, an extra component, c(0)− , is added to the top of the vec-
tor on the right of Eq. (15). This is the unknown part of the
state at the left boundary. The goal is to replace the two in-
equivalent vectors that appear in Eq. (14) by a single vector
consisting only of the unknown components of the system
state across the interval.

Looking at the second term in Eq. (14), we see that the
first block-column of the matrix multiplies only the specified
component, c(0)+ . Consequently, it can be stripped off and

moved to the right side. At the same time, noting that c(N )+ is
an unknown, we append it to the bottom of the vector in the
second term in Eq. (14) and augment the multiplying matrix
with a zero column—with no net effect. Equation (14) now
takes the form,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−F(1)+−
−F(1)−−

1 0
0 1

0
0

−F(2)++ −F(2)+−
−F(2)−+ −F(2)−−

. . .
0
0

. . .
1 0
0 1

0
0

−F(N )++ −F(N )+−
−F(N )−+ −F(N )−−

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(0)−
c(1)+
c(1)−
...

c(N−1)
+

c(N−1)
−
c(N )+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
...

c(N )+
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F(1)++ c(0)+
F(1)−+ c(0)+

0
0
...

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−F(1)+−
−F(1)−−

1 0
0 1

−F(2)++ −F(2)+−
−F(2)−+ −F(2)−−

. . .

. . .
1 0
0 1

−F(N )++ −F(N )+−
−F(N )−+ −F(N )−−

1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(0)−
c(1)+
c(1)−
...

c(N−1)
+

c(N−1)
−
c(N )+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F(1)++ c(0)+
F(1)−+ c(0)+

0
0
...

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (16)
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3.2 Solving the system of equations via LU decomposition

The above system of equations is block quadridiagonal, and
as such can be solved in economical fashion with order O (N )
operations. To achieve this scaling, we explicitly construct
the LU factorization of the coefficient matrix, and succes-
sively solve the associated L and U systems of equations.
Solving the system of equations explicitly (see Appendix)
permits a recasting of the solution into a form which mani-
festly avoids the exponential instability of the straightforward
solution. A stable numerical algorthim is developed which
affords a graphical interpretation as a kind of evolution across
the interval and back.

Applying LU decomposition to Eq. (16) yields an itera-
tion in terms of the blocks of L and U and the solution of
the outer system equations, in addition to the components
of c on the grid. Some of these blocks are expressed as the
inverse of vanishingly small matrices, e.g., the blocks of U
and the minus components of the solution, b, to the outer
system of equations in asymptotic regions. Nevertheless, it
is possible to eliminate all the ill-defined vectors and matri-
ces from the iteration (see Appendix) and get the following
shift-equations iteration (SEI) equations.

L( j)
±+ = F( j)

±+, j = 1, . . . , N ,

L( j)
±− = F( j)

±− + F( j)
±+L( j−1)

+−
(
L( j−1)

−−
)−1

, j = 1, . . . , N .

(17)

These first two equations determine the blocks of the L matrix
as effective propagators (L-propagators) between neighbor-
ing points. While the + to ± mappings, L( j)

±+, are just the

elementary propagators, F( j)
±+, the − to ± mappings, L( j)

±−,
include an extra term which revisits the previous point, x j−2.
This L-propagation is depicted graphically in Fig. 1.

The solution to the outer system of equations—note that
minus components are not needed—is generated concur-
rently with the blocks of L in the forward iteration;

b( j)
+ =

[
F( j)

++ − L( j)
+−

(
L( j)

−−
)−1

F( j)
−+

]
b( j−1)

+ , j =1, . . . , N .

(18)

The forward iteration ends at j = N with

b(N )+ = c(N )+ = T,

the transmission coefficient. It is followed by an iteration
back to j = 1,

c( j)
+ = b( j)

+ + L( j)
+−

(
L( j)

−−
)−1

c( j)
− , j = N , . . . , 1,

c( j−1)
− =

(
L( j)

−−
)−1 [

c( j)
− − F( j)

−+b( j−1)
+

]
, j = N , . . . , 1.

(19)

Fig. 1 Visualization of the construction of the L( j)
±− mappings accord-

ing to Eqs. (26) and (27). The L( j)
±− are depicted as solid arrows connect-

ing—components at x j−1 (the solid square) to + and—components at

x j —the top and bottom open squares, respectively. L( j)
−− is constructed

as the sum of two terms: (1) the direct contribution, F( j)
−−, represented

by the bottom medium-dashed curve, and (2)
(
L( j−1)

−−
)−1, which maps

backwards to x j−2, followed by L( j−1)
+− mapping the resulting—com-

ponents at x j−2 to + components at x j−1, and F( j)
−+ which takes the

+ components at x j−1 to—components at x j . The former two map-
pings are depicted by long-dashed arrows, while the latter mapping
appears as a medium-dashed arrow. L( j)

+− is similarly constructed. The

direct contribution is F( j)
+−, the middle short-dashed arrow. The indi-

rect contribution consists of the same first two mappings in the indi-
rect contribution to L( j)

−−, namely
(
L( j−1)

−−
)−1 and L( j−1)

+− , followed by

F( j)
++ (the top short-dashed curve) which maps to + components at x j .

L( j−1)
±− are determined in the previous step of the shift equations itera-

tion which is initialized by L(1)±− = F(1)±−, i.e., there are no long-dashed
arrow contributions in the first step

The minus components, c( j−1)
− , of the energy eigenfunction

are given by successive L-propagations back across the inter-
val, subtracting out the − to + propagation of b( j−1)

+ from
x j−1 to x j at each point. Figure 2 represents this propaga-
tion, and that of the plus components, graphically. The back
propagation ends at j = 1 with

c(0)− = R,

the reflection coefficient. The shift equations iteration result
in a numerical method upon adoption of a suitable integrator
to determine the blocks of the F matrix. First, however, we
investigate the stability of SEI.

3.3 Stability of the shift equations iteration

In the case of N = 1, SEI reduces to (suppressing the super-
script on the propagator matrix in the case of a single step)
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Fig. 2 Visualization of the construction of b( j)
+ , c( j)

+ and c( j−1)
−

according to Eqs. (28), (29) and (30). L( j)
±± mappings are depicted

as solid arrows connecting n component system + or—states repre-
sented by boxes. Each state (except the initial seed state, c(0)+ , which
is the unit vector in the seed channel) is a sum of contributions

represented by arrows, labeled by the associated mapping, pointing to
the box. Dashed arrows correspond to the identity mapping. The trans-
mission and reflection coefficients, T and R, appear as end states on the
right and left, respectively

(
c(0)−
c(1)+

)
=

( − (F−−)−1 F−+c(0)+[
F++ − F+− (F−−)−1 F−+

]
c(0)+

)
. (20)

This is just the result obtained by matching boundary condi-
tions via propagation across the entire interval from x0 = xleft

to x1 = xright. This formula is somewhat reminiscent of the
Feschbach formula for the resolvent in terms of projections
onto open and closed channel subspaces.4 The matrix alge-
bra is equivalent. As already discussed, the N = 1 formula
is not useful if closed channels are present. The propagator,
F, across the entire interval has very large (and small) eigen-
values whenever there are closed channels. For example, con-
sider that in the WKB (i.e., adiabatic) approximation, the
c± consist of WKB exponential functions. Those associated
with closed channels decay (+) or grow (−) from left to right
across classically unallowed intervals. The largest such com-
ponents are those associated with the highest energy level.
While the WKB approximation may break down over large
intervals (e.g., break down is assured across turning points),
exponentially large eigenvalues of F remain. In any case, the
large components have undesirable numerical consequences.
First, the other components of the propagator are not accu-
rately determined because of rounding error resulting from
large component contributions. At each step in the integration
of the propagator across the interval, the large components

4 Equation (20) is a variation on the Feschbach formula. See Refs. [34,
35].

make contributions to the other components which eventu-
ally become impossible to accumulate accurately. The other
problem associated with the large components is that expo-
nential blow-up in closed channels is not shared by the solu-
tion which satisfies the boundary conditions. Consequently,
the desired solution can arise from Eq. (20) only as a result
of cancellation of the large terms, with significant associated
rounding errors. Also, because of the exponential growth of
closed channel components, the largest elements of F−− are
exponentially larger than the other elements (also large in
the case of other closed channels). Factor out the largest ele-
ment of F, and the remaining elements are exponentially
small—except those in the bottom row (i.e., those associated
with the highest energy level). Thus, the columns of F−−
are nearly proportional, i.e., it is nearly singular. These char-
acteristics of the F matrix have been observed numerically
for specific two-level systems, though the rounding errors
described above pose the principal numerical difficulty.

The shift equations approach, derived above, avoids the
pitfalls of Eq. (20) by working with the propagator across
small intervals. Clearly the propagator can be computed accu-
rately across small intervals. What remains is to verify that
numerical instability does not return upon traversing the full
interval via a succession of small intervals. As a point of
reference, consider the accumulation of F via simple matrix
multiplication of small interval propagators. In particular,
consider the propagator for two successive small intervals,
the j th and j + 1th,
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(
F( j+1)

++ F( j)
++ + F( j+1)

+− F( j)
−+ F( j+1)

++ F( j)
+− + F( j+1)

+− F( j)
−−

F( j+1)
−+ F( j)

++ + F( j+1)
−− F( j)

−+ F( j+1)
−+ F( j)

+− + F( j+1)
−− F( j)

−−

)
.

The blocks that map to − components, i.e., F(
j ′)

−± , apply
expansion factors (i.e., factors greater than unity) to closed-
channel components. Contributions to the x j−1 to x j+1

mapping shown above consisting of products of such
blocks—namely F( j+1)

−− F( j)
−+ and F( j+1)

−− F( j)
−−—multiply these

expansion factors, and exponential growth arises upon accu-
mulation of the propagator over many small intervals. In
contrast, iterating Eqs. (27) and (28) in the forward direc-
tion, and Eq. (30) in the reverse direction does not result in
exponential growing states. To see this, first note that since
c( j)
+ does not appear on the right side of the final form of the

iteration equations, it is not necessary to assess Eq. (29) for
potential exponential growth. Consider now the iteration in
the forward direction. The L( j)

±− blocks have the same sort
of expansion and contraction factors, of the same order, as
the F( j)

±− blocks. This is proved by induction, as follows. For

j = 1, L(1)±− = F(1)±−. Assume the statement for the j − 1th
blocks. Equation (27) assures the result for the j th blocks—
the second term on the right generally contributes smaller
elements than the first, as only L( j−1)

−− contains expansion
factors and it appears only in its inverse form.

Turning to Eq. (28), we see that b( j)
+ does not pick up

expansion factors relative to b( j−1)
+ . The expansion factors

introduced by F( j)
−+ are countered by contraction factors asso-

ciated with
(
L( j)

−−
)−1. Therefore, forward iteration is stable,

as long as the intervals are sufficiently small to justify the
application of the WKB (adiabatic) approximation for inte-
gration from x j to x j+1. In practice, the intervals can be
much larger. The above stability argument requires only that
expansion factors are confined to F( j)

−±. Leakage of expan-
sion factors into the other two blocks only occurs well past
the point the WKB approximation begins to break down.

The equations are better behaved numerically if, instead
of propagating c± (x), we propagate ψ± (x). The only dif-
ference between these choices is a square root momentum
factor—recall that c± (x) is the local WKB representation
(i.e., the origin of the action integrals in the WKB basis func-
tions is x , and the basis functions reduce to prefactors). The
above equations hold with c( j)

± replaced byψ( j)
± , if we let F( j)

denote the propagator in ψ± representation. The argument
guaranteeing convergence of the iteration, for sufficiently
small intervals, still holds. The square root momentum fac-
tors associated with transformation to ψ± representation do
not contribute to exponential instability. However, they do
cause numerical problems in the neighborhood of turning
points, if computations are carried out in c± representation.
Numerical methods based on truncated Taylor expansion
of the system state are inaccurate in the neighborhood of

turning points if c± (x) represents the system state. Since
turning points are not branch points of ψ± (x), there is no
such numerical problem in adiabatic representation. Cross-
ing points are branch points ofψ± (x). But, they occur off the
real axis and do not pose a problem in this article. Note that,
while c( j)

± computed directly from the shift equations itera-
tion is not accurate in the neighborhood of turning points, we
have found that it is nevertheless accurate in the asymptotic
regions. In particular, reflection and transmission coefficients
are computed accurately in c± or ψ± representation.

3.4 A symplectic log-derivative propagator

The exponential instability addressed via the shift equations
is also addressed by log-derivative methods [7–10]. In fact,
log-derivative methods provide the current standard of
stability and efficiency among integration-type methods, i.e.,
solutions of close coupled equations. The symplectic log-
derivative method of Manolopoulos and Gray [25] based
on the McLachlan Atela [26] six-step fifth order symplectic
integrator (MA5), is a very efficient example of such meth-
ods. For this reason, and because it is easily implemented,
it is chosen as our means of constructing the propagator
matrix at each step of the shift equations iteration. To use
this approach, the state expressed in ψ± representation is
transformed to � − Y representation. Thus, we effectively
return to Eq. (2) in the numerics. Note, however, that SEI is
still implemented in adiabatic representation—the propaga-
tor matrix determined in�−Y representation is transformed
back to ψ± representation at each step. The reason for doing
this is to access the numerical efficiency of the log-deriva-
tive approach which is formulated in terms of � and � ′. It
is possible to work entirely within ψ± representation, using
SEI, and we have done this. In particular, we have used direct
Runga–Kutta integration of Eq. (4). However, the most effi-
cient approach was the log-derivative approach we present
here, see Table 2 for a comparison of methods. Each block
of the propagator matrix results from propagation of n unit
vectors in ψ± representation, e.g., F( j)

±+ results from prop-
agation of the n × n identity matrix, ψ+

(
x j−1

)
, at x j−1,

to ψ±
(
x j

)
at x j . Transforming the former to � − Y rep-

resentation and propagating according to MA5 determines
�
( j)
± and Y( j)

± = �
′( j)
± (�

( j)
± )−1. Two n × n wavefunction

matrices, ψ+ and ψ−, are propagated in � − Y represen-
tation via this symplectic log-derivative integrator. This is
unlike usual implementations of log-derivative propagation
wherein only one n×n wavefunction matrix is propagated. In
the latter implementations, it is sufficient to propagate only
n wavefunctions because the solutions excluded are either
asymptotically divergent in closed channels or have com-
ponents incoming from the right in open channels. To use
log-derivative propagation within the shift equations
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framework, two sets of n solutions are required because the
starting point in the propagation, x j−1, is mostly not asymp-
totic. The � − Y blocks determined by log-derivative prop-
agation are related to the blocks of the F matrix as follows:

(
�
( j)
+ �

( j)
−

Y( j)
+ Y( j)

−

)
=

⎛
⎝ Z j

[
F( j)

++ + F( j)
−+

]
Z j

[
F( j)

+− + F( j)
−−

]
(
iP j/h̄

)
Z j

[
F( j)

++ − F( j)
−+

] [
F( j)

++ + F( j)
−+

]−1 (
Z j

)−1 (
iP j/h̄

)
Z j

[
F( j)

+− − F( j)
−−

] [
F( j)

+− + F( j)
−−

]−1 (
Z j

)−1

⎞
⎠.

(21)

Inversion of Eq. (21) determines the blocks of the F( j) matrix,
used in the shift equations iteration, in terms of log-derivative
propagation. Specifically,

(
F( j)

++ F( j)
+−

F( j)
−+ F( j)

−−

)
=

⎛
⎜⎝

Z−1
j P−1

j

[
P j − ih̄Y( j)

+
]
�
( j)
+ /2 Z−1

j P−1
j

[
P j − ih̄Y( j)

−
]
�
( j)
− /2

Z−1
j P−1

j

[
P j + ih̄Y( j)

+
]
�
( j)
+ /2 Z−1

j P−1
j

[
P j + ih̄Y( j)

−
]
�
( j)
− /2

⎞
⎟⎠, (22)

with�± and Y± propagated via the MA5 six-step symplectic
integrator. In particular, the interval

(
x j−1, x j

)
is divided into

NMA5δx-width subintervals, with propagation across such a
subinterval executed in six substeps,

xk = xk−1 + αkδx

� ′ (xk) = � ′ (xk−1)− βkP2 (xk−1)� (xk−1) δx/h̄2

� (xk) = � (xk−1)+ αk�
′ (xk) δx, k = 1, . . . , 6 (23)

Here, (xk−1, xk) is a subinterval of a δx-width subinterval.
The six αk and βk coefficients, producing a O

(
δx5

)
error

with the smallest sixth-order contribution, were determined
by McLachlan and Atela [26]. Values are given in Table 1.

Equations (23) are a discretization of Hamilton’s equa-
tions for an effective harmonic oscillator system for which
x serves as the time coordinate. The force constant for the
effective harmonic oscillator is x dependent—specifically,
P2 (xk−1) /h̄2 [25]. The iteration is symplectic because each
step corresponds to exact pure potential propagation—drop
the kinetic energy of effective harmonic oscillator Hamilto-
nian and replace P2 (x) by the piece-wise constant approx-
imation, P2 (x) = P2 (xk−1) in each subinterval (xk−1 <

x < xk)—followed by exact pure kinetic (i.e., free particle)
propagation—just drop the potential term. The x-dependent

Table 1 Coefficients for the McLachlan Atela six-step fifth order sym-
plectic integrator (MA5) [26]

α1 = 0.339 839 625 839 11 β1 = 0.119 390 029 287 57

α2 = −0.088 601 336 903 027 β2 = 0.698 927 370 382 48

α3 = 0.585 8564 768 259 6 β3 = −0.171 312 358 271 60

α4 = −0.603 039 356 536 49 β4 = 0.401 269 502 251 35

α5 = 0.323 580 796 554 70 β5 = 0.010 705 081 848 236

α6 = 0.442 363 794 219 75 β6 = −0.058 979 625 498 031

effective Hamiltonian is thus replaced by a discretely
varying effective Hamiltonian with kinetic and potential por-
tions alternately turned on and off across the interval.

Equations (23) provide the exact evolution for the resulting
Hamiltonian system, and as such conserve all the Poincaré
integral invariants, i.e., they are symplectic.

Manolopoulos and Gray [25] convert Eqs. (23) to log-
derivative form in response to the exponential divergence
problem. They explain how the accuracy of the log-derivative
equations,

X (xk) = Y (xk−1)− βkP2 (xk−1) δx/h̄2

Y (xk) = [
1 + αkX (xk) δx

]−1 X (xk)

� (xk) = [
1 − αkY (xk) δx

]−1
� (xk−1), (24)

is governed solely by the convergence of the Taylor series for
� (x) rather than those of Y (x), explaining why the poles of
Y (x) do not cause numerical difficulties.

In Sect. 4, the SEI is implemented as described above
for two 2 level systems. It is found to provide convergence
characteristics comparable to the best log-derivative results
seen in Ref. [6], i.e., besides from the overhead of integrat-
ing 2n wavefunctions rather than just n, and the implemen-
tation of the iteration equations (only once every 6NMA5

implementations of Eqs. (24), however). The advantage of
the shift equations approach is that it circumvents the expo-
nential divergence problem with or without use of log-deriv-
ative propagation. In particular, it provides both reflection
and transmission coefficients, and wavefunctions, directly
without exponential divergence. This is important because
log-derivative methods, in their usual formulation, do not
generally provide transmission coefficients free of exponen-
tial divergence. Reference [6] describes how to extend log-
derivative methods to get such transmission coefficients.
However, it is not clear that exponential-divergence-free
wavefunctions can be obtained with log-derivative methods.
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Fig. 3 Two-level model system potential energy curves. Adiabatic
(solid lines) and diabatic (dashed lines) curves are shown. (Note that
dashed diabatic curves are not visible in the tight avoided crossing mod-
els on the left.) The coupling between diabatic levels is shown as a dot-
dashed line. Dotted horizontal lines indicate the energies investigated
in the convergence study—see Fig. 7 and Tables 2 and 3—and some
of the energies for which wavefunctions are plotted. The upper panels

are two instances of the model in Ref. [36] designated as “potential A”.
The left of these shows a tight avoided crossing, while the right shows a
loose avoided crossing due to a stronger Gaussian coupling. The lower
panels are two examples of the model called “potential B”, the left of
which taken directly from Ref. [6]. The bottom right panel is the same
as the left except for a larger coupling function which produces a looser
avoided crossing

Generally, log-derivative methods are best suited to radial
problems which do not have transmission channels. The shift
equations iteration is well suited to two-sided problems with
multiple open channels. Examples of such problems include
quantum or molecular wires [18–20].

4 Numerical results

4.1 Two-level model systems

The SEI is tested on simple two-level systems from Refs. [6,
36]—all with particle mass, m = 1. They represent generic
examples of avoided crossing in two-sided systems—non-
adiabatic tunneling systems in the words of Zhu and
Nakamura [27]. All the systems treated here are two-sided
models with both reflection and transmission coefficients.
Two-sided systems highlight a unique strength of the SEI,
namely the elimination of exponential blow-up in transmis-
sion as well as reflection coefficients. All results shown were

obtained via solution of the equations of Sect. 2.2 with F
matrices provided by symplectic log-derivative integration
between successive x j .

The potential energies for the model systems considered
below are shown in Fig. 3. The top two panels are from Ref.
[36]. They are instances of what we term potential A, defined
by

V11 (x) = V0 [1 + tanh (x/�x)],

V22 (x) = V0 [1 − tanh (x/�x)]

and,

V12 (x) = V21 (x) = C0 exp
(
−x2/�x2

)
,

with V0 = 25, �x = 2.5 and C0 = 1 and 10 (top left
and right panel, respectively). They represent tight and loose
symmetric avoided crossings. The bottom left panel is a
model studied in Ref. [6]. The bottom right panel is the
same model, potential B, with the coupling between diabatic
levels arbitrarily increased so that the bottom two panels
provide examples of tight and loose asymmetric avoided
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Fig. 4 Asymptotic transmission and reflection flux probabilities as a
function of energy for an incoming seed of unit flux in the ground level.
The left panels correspond to computations done on the upper-left panel
potential A model of Fig. 3. The right panels correspond to computa-

tions for the upper-right panel potential A model of Fig. 3. The upper
panels provide log-plots to make visible the very small reflection and
transmission probabilities above and below the barrier, respectively

crossing, respectively. In this model, all the elements of V (x)
are expressed in terms of tanh functions [6]. In the case of
potential B, all computations presented below are for waves
incoming in the lower channel on the right, as opposed to the
left in the case of potential A. This convention is in accor-
dance with the computations of Ref. [6], and with radial coor-
dinate models. To use the SEI with this convention, left and
right must be interchanged in Sect. 3.

Figures 4 and 5 show the reflection and transmission prob-
abilities (only transmission probabilities are shown in Fig. 5)
computed using SEI with the symplectic log-derivative inte-
grator of Manolopoulos and Gray [25] for potentials A and B,
respectively. The left panels correspond to the tight avoided
crossing models, while the right panels correspond to loose
avoided crossings. The top panels are log plots of the same
data. They provide a clearer view of the sharp resonances
of the C0 = 10 (loose avoided crossing case) potential A
model (right panels of Fig. 4). Note that it was necessary to
refine the energy grid used in these plots, via bisection in the
neighborhoods of resonances, in order to adequately resolve
the sharp features in the reflection and transmission proba-
bilities. Actually, the sharp negative resonance peaks seen in

the log-plots of transmission probabilities are generally still
not fully resolved, as shown here. With resonance energies
fully resolved, transmission probability goes much lower—
on a much finer energy scale—than shown here. For exam-
ple, the fourth lowest energy resonance of the loose avoided
crossing potential A system, resolved to double precision
accuracy, produces a transmission probability of 10−21.
According to Nakamura (see Chapter 11 of [29]), transmis-
sion probability is exactly zero right at resonance. Figure 6
shows high-resolution potential A system reflection and trans-
mission probabilities for C0 varied from 10 to 1. The reso-
nances observed shift upon varying C0 in accordance with
the corresponding shift in the energy eigenvalues of the upper
channel well with coupling to the lower channel turned off.
Otherwise, they broaden as C0 decreases. But, even the broad-
est resonances seen in Fig. 6—i.e., those for potential A with
C0 = 1—show transmission probability spiking below the
bottom of the graph indicating very near 100% reflectivity at
resonance. In any case, the broadening in the tight avoided
crossing case is such that high-resonant reflectivity is spread
over the entire above-barrier energy range—with C0 = 1 the
reflectivity is greater than transmissivity at all energies below
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Fig. 5 As in Fig. 4 except the left panels are for the potential B model of the lower-left panel in Fig. 3, while the right panels correspond to the
potential B model of the lower-right panel in Fig. 3

E = 50. This is consistent with the tight avoided crossing
case being close to the diabatic limit. In the diabatic limit, the
particle sees only the barrier on the right of the first diabatic
potential. In terms of the adiabatic representation, the particle
is excited to the upper level near x = 0, encounters the right
wall of the upper level well, then returns to the lower level
without encountering the left wall of the upper level well.

The loose avoided crossing case of potential B—the right
panels of Fig. 5—shows four resonances as negative peaks in
transmission probability, just as for potential A. These corre-
spond to pseudo-bound states of the shallow but broad well
in the upper channel. The tight avoided crossing case is the
model used in Ref. [6]. The transmission probability shown
in the left panels of Fig. 5 exactly reproduces Fig. 4 of Ref.
[6]. So, the method works. But does it offer any advantage?
To address this question, we first consider the results of some
convergence studies analogous to those depicted in Fig. 5 of
Ref. [6].

4.2 Convergence studies

Figure 7 shows the relative error in transmission probabili-
ties for a series of potential B computations, with N = 100
and varying number of MA5 steps NMA5 used to compute
requisite F( j) matrices. We see that the transmission prob-
ability converges for fixed finite N . That is, SEI is exact

if the integration for each step is converged. This is true
for N down to about 20 for both potentials A and B. For
smaller values of N , the associated F( j) matrices diverge
exponentially and cannot be computed sufficiently accurately
to obtain transmission and reflection coefficients. In any case,
the shift equations iteration is essentially exact. The error
seen in the resulting transmission probabilities directly man-
ifests the error in the F( j) matrices. Additional computations
(not shown here) indicate that that the error depends only
on the product, Ntotal = N NMA5 over a wide range of N
and NMA5 values. Increasing the number of integration steps
between grid points and increasing the number of grid points,
N , produce the same accuracy.

Figure 7 can be compared directly with Fig. 5 of Ref. [6].
Consider the errors for Ntotal = 500 total integration steps,
given in Table 2. Results using SEI in combination with a
number of different non-log-derivative integrators and with
the log-derivative form of MA5 (ldMA5) described in Ref.
[25] are included along with results estimated from Fig. 5 of
Ref. [6]. The latter results are for log-derivative propagation
in accord with Johnson [7] and Manolopoulos [10].

The errors in SEI with log-derivative MA5 (SEI-ldMA5)
are seen to be smaller than those obtained in Ref. [6] using
the method of Johnson [7], but not quite as small as those
obtained with the reference half-interval method of
Manolopoulos [10]. Because SEI-ldMA5 errors scale as

123



396 Theor Chem Account (2008) 119:383–405

Fig. 6 Transmission (solid lines) and reflection (dashed lines) proba-
bilities as functions of energy, for potential A, with varying coupling
amplitude—C0 = 1, 2, 5 and 10, as labeled

Fig. 7 Relative error in transmission probability as a function of the
total number of integration steps computed, for potential B. N = 100
and NMA5 = 1 to 10, giving Ntotal = 100 to 1000. Curves are labeled
according to energy and channel. Only the lower channel is open for
the lower two energies. O(δx5) (dashed line) is included to provide a
reference slope (namely, −5)

O
(
N−(5 to 6)

total

)
, while Manolopoulos errors scale more like

O
(
N−(4 to 4.4)

total

)
, SEI-ldMA5 is more accurate than the Mano-

lopoulos algorithm for larger Ntotal (beginning around
Ntotal = 1000). This is not to say that SEI-ldMA5 is more
efficient at these very high accuracies. We have made no
attempt to count the total number of steps in the two compu-
tations. The point is only that SEI-ldMA5 performs compa-
rably to a very efficient existing method. It is worth noting
that computations of Ref. [25] show the log-derivative form
of MA5 to outperform the original Johnson algorithm in a

set of standard radial problems (Secrest–Johnson, Lester–
Bernstein and Dunker–Gordon), in accordance with results
shown here.

The non-log-derivative integrator formulations of SEI
generally do not perform as well as SEI-ldMA5 in the case of
potential B, see Table 2. However, for potential A, SEI with
fifth order Runge–Kutta integration (RK5) or a fourth order
adaptation of the leap-frog Verlet algorithm (V4) outper-
forms SEI-ldMA5 at the above-barrier energies, E = 25 and
40, see Table 3. It is noteworthy that these two or any other
non-log-derivative algorithms cannot be used directly—i.e.,
outside of the shift equations iteration approach—to deter-
mine reflection and transmission probabilities. Non-
log-derivative integrators diverge if used for intervals larger
than about 1/20 of the range of x (i.e., N � 20). SEI allows
these integrators to be useful by breaking the x range into
intervals over which F( j) can be computed accurately. In
some cases, non-log-derivative integrators are as good as or
better than SEI-ldMA5.

SEI-ldMA5 appears to perform quite well in most ins-
tances. In any case, it always converges. However, the real
advantage of the shift equations approach is that it permits
computation of both transmission and reflection coefficients
with managed exponential growth (i.e., there is only expo-
nential growth between successive grid points which the iter-
ation does not accumulate). Log-derivative methods provide
exponential-divergence-free reflection coefficients. But, in
general, computation of the transmission coefficients requires
the wavefunction across the interval. Reference [6] circum-
vents the exponential growth of wavefunctions by expressing
the transmission coefficients in terms of the product
of G matrices—G

(
x j−1, x j

) = �
(
x j−1

)
�−1

(
x j

)
—

accumulated on crossing the interval from the transmission
region to the incoming region. The resulting product,
G

(
xleft, xright

) = � (xleft)�
−1

(
xright

)
, is used to get the

transmitted wave,� (xleft), from the incoming plus reflected
wave, �

(
xright

)
. The latter wave is known in terms of the

exponential-growth-free log-derivative. Because G (xleft, x)
is accumulated from left to right, ending at x = xright, expo-
nential growth in� (x)manifests only as exponential decay.
Consequently, the transmission coefficient computation of
Ref. [6] is not subject to numerical overflow. Nevertheless,
it is not clear how robust the method is in cases of multiple
closed channels, since G

(
xleft, xright

)
consists of a super-

position of exponentially decaying terms in such cases. The
potential B computations of Ref. [6] demonstrate the method
works well for a two level system at energies with two open
transmission channels, E = 10,500 cm−1, and a closed chan-
nel on both the left and the right, E = 9,100 and 9,700 cm−1.
We have verified these results using the Johnson algorithm of
Ref. [6], and have shown the method to work for potential A
and for a three- and a four-level system [24]. However, while
the algorithm of Ref. [6] provided accurate transmission

123



Theor Chem Account (2008) 119:383–405 397

Table 2 Convergence of potential B transmission probability computations

− log10 (trans. prob. err.a) Johnsonb Manolopoulosb SEI-ldMA5 SEI-RK5c SEI-RK4d SEI-V4e

9,100 cm−1 4.8 6.5 5.4 2.7 1.8 3.9

9,700 cm−1 4.0 5.7 6.5 2.6 1.7 3.8

10,500 cm−1, lower channel 6.5f 7.5f 5.8 2.4 1.5 3.6

10,500 cm−1, upper channel 6.5 9.2f 7.9 2.6 1.7 3.6

− (best linear slope)

9,100 cm−1 4.4 4.3 5.1 5.0 5.0 4.2

9,700 cm−1 4.2 4.0 6.0 5.0 5.0 4.3

10,500 cm−1, lower channel 5.9 4.4 5.0 5.0 5.0 4.3

10,500 cm−1, upper channel 3.8 4.3 5.1 5.0 5.0 4.2

Log10 of the error in transmission probability for 500 total integration steps, and the best linear slopes in the log10 (error) vs. log Ntotal plots
a Transmission probability is computed with Ntotal = 500 total integration steps
b These data are extracted from Fig. 5 of Ref. [6]
c Shift equations iteration with fifth order Runge–Kutta computation of the F( j) matrices
d Shift equations iteration with fourth order Runge–Kutta
e Shift equations iteration with a fourth order adaptation of the leap-frog Verlet algorithm
f These numbers were obtained by extrapolating data shown in Fig. 5 of Ref. [6]

Table 3 Convergence of potential A transmission and reflection prob-
ability computations

− log10 (transit prob. error) SEI-ldMA5 SEI-RK5 SEI-RK4 SEI-V4

10 (transmission) 11.0 4.3 3.5 5.9

25 (reflection) 3.9 6.7 4.0 5.3

40 (reflection) 4.0 5.0 2.9 5.1

− (best linear slope)

10 (transmission) 5.7 5.0 5.1 4.3

25 (reflection) 5.7 6.0 4.0 3.9

40 (reflection) 6.2 6.0 4.0 3.5

Errors are for 1000 total integration steps. Otherwise, as in Table 2

coefficients, it did not provide accurate wavefunction compo-
nents in the asymptotic region for closed channels. It is not yet
clear whether the method can be adapted to provide accurate
wavefunctions across the interval, including closed channel
components. In any case SEI provides such results. The prob-
lem of exponential instability [2–4] is discussed in Ref. [6],
but not in the context of computation of wavefunctions. They
describe how numerical instability is addressed by an Airy
function-based variation of the log-derivative method [5]. No
convergence study for this latter algorithm is shown, how-
ever.

4.3 Wavefunctions

The shift equations iteration provides energy eigenfunctions
at the x j grid points. It is interesting to examine these wave-
functions. Figures 8, 9, 10 and 11 show wavefunctions for
potential A with C0 = 10, at E = 10, 25, 36.3360539773469

(the first resonance converged to double precision accuracy)
and 42.3795273 (the fourth resonance), respectively. The first
energy is in the tunneling regime. Here, we see the interfer-
ence between the comparable (in amplitude) incoming and
reflected waves, and the exponentially small tunneling ampli-
tude. Figure 8 also shows the corresponding one-level system
wavefunction (i.e., computed using only the lower adiabatic
potential) and WKB right and left-going waves, for com-
parison. The one-level system wavefunction (the dot-dashed
line in the top panel) is indistinguishable from the two-level
system wavefunction, except for the small non-adiabatic-
transition-related drop in the two-level system wavefunction
beyond x = 0 (seen more clearly in the the inset). Similar
plots are shown in Fig. 12 for potential A with C0 = 1, at
E = 10. The effect of the non-adiabatic transition is more
pronounced in this case. In particular, the onset of this drop
is clearly seen to occur at x = 0, the real part of the two com-
plex conjugate crossing points. WKB wavefunctions,ϕ± (x),
are also shown in the wavefunction figures—scaled to give
the best fit (if possible) to the computed exact wavefunc-
tions. Note the tiny divergent portions of the WKB wave-
functions at the turning points in the top panel of Fig. 8. In
the tunneling regime, the lower channel (top panel) wave-
function is modeled by ϕ+ (x)+ ϕ− (x), up to the first turn-
ing point (note that |ϕ+ (x)| and |ϕ− (x)| match exactly to
the left of the left turning point), and ϕ+ (x) beyond (i.e., to
the right). For E = 25 (Fig. 9), the lower channel (upper
panel) wavefunction is modeled perfectly by ϕ+ (x); i.e., it
is a simple right-going wave across the interval with a small
enhancement in the interaction region where the wave slows
down due to the potential barrier. This is typical of all
above-barrier wavefunctions except those near resonance
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Fig. 8 Log plots of the wavefunction, specifically log10

∣∣ψ j
∣∣,

expressed in the adiabatic representation with respect to potential cou-
pling, i.e., the representation intermediate between diabatic and ψ±
representations. This, and all other wavefunctions shown below, were
computed with Ntotal = 10,000 integration steps. The top panel corre-
sponds to the lower channel of the two-level system, while the bottom
panel corresponds to the upper channel. This is a below barrier energy
eigenfunction (E = 10 ) for the potential A system, with C0 = 10. The
corresponding one-level system wavefunction is shown as a dot-dashed
line in the top panel for comparison. The one and two-level wavefunc-
tions are compared more closely in the inset of the top panel. Scaled
WKB wavefunctions are also depicted in both panels. The WKB plus
wave (right-going) and minus wave (left-going) are shown as dashed
and dotted lines, respectively. In the bottom panel, a Gaussian model
function (dot-dashed line) overlays the wavefunction, with close agree-
ment except for a 90◦ phase shift

energies. For the first resonance wavefunction (Fig. 10), the
lower level wavefunction is modeled byϕ+ (x)+ϕ− (x) up to
about x = −1. Beyond this value the lower level wavefunc-
tion is non-adiabatic. Strictly speaking, this wavefunction
is modeled by ϕ+ (x)—scaled down by about 10 orders of
magnitude—for x � 5. However, the amplitude of this very
weak transmitted wave is sensitive to how accurately the res-
onance energy is determined. Figure 10 shows the first reso-
nance wavefunction, with the resonance energy determined
to double precision accuracy. The associated transmission
probability is about 10−20. In Fig. 11, three successively
better converged fourth-resonance energies are chosen,
showing how the transmission probability drops as the exact
resonance energy is approached. The energies are 42.37954,
42.37953 and 42.3795273. Convergence of this resonance
to double precision accuracy, 42.3795273343290, produces
a transmission probability of about 10−21.

There is traditionally little concern for the behavior of the
wavefunction in closed channels. Most applications focus on
reflection probabilities (or transmission probabilities as in
Ref. [6]). Here, we look at the upper channel wavefunctions
shown in the bottom panels of Figs. 8, 9, 10, 11 and 12. In
each case, there is a profile which fits very well to a Gauss-

Fig. 9 As in Fig. 8 except E = 25 and the one-level system wave-
function is not shown in the top panel. The top panel has a split scale
in order to accommodate the small variations in both the WKB plus
and minus waves on the same graph. The amplitude of the WKB minus
wave is chosen to match that of ψ2−, the left-going component of the
upper channel wavefunction (not shown) in the left asymptotic region,
i.e., it gives the correct above-barrier reflection probability. Note that
the computed wavefunction in the top panel exactly coincides with the
WKB plus wave

ian (or a Gaussian plus a larger but narrower pseudo-bound
resonance wavefunction, in the case of the resonance ener-
gies, Figs. 10 and 11). In the tunneling cases (Figs. 8 and
12) the upper channel wavefunction is well modeled as the
product of the lower channel wavefunction and a Gaussian
(the same Gaussian used for the potential coupling)—except
that it is 90◦ out of phase and slightly broader. Effectively,
a smooth tunneling probability step function is applied to
the otherwise symmetric Gaussian profile. In addition, there
is an interference pattern mirroring that of the lower channel
wavefunction, except for the 90◦ phase shift. We see interfer-
ence, in spite of the fact that the adiabatic solutions in a closed
channel are non-oscillatory. Along with the tunneling right–
left asymmetry, the left-going right-going interference of the
lower channel is evidently imprinted on the upper channel
wavefunction. The imprinting of the asymmetry is consis-
tent with the observed lowering of transmission probability
due to non-adiabatic transition, i.e., that non-adiabatic tran-
sition occurs primarily to the left of the interaction region is
consistent with it contributing primarily to reflection. How-
ever, we have not ruled out the damping of transmission and
concomitant enhancement of reflection being an interference
phenomenon (as it is for resonances, see below). Consider, for
example, that the upper channel wavefunction has approxi-
mately equal (except for a phase factor) + and − components
(plots are not shown). Nevertheless, computations at ener-
gies above and below E = 10 show that the factor by which
transmission probability is damped by the introduction of the
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Fig. 10 As in Fig. 9 except E = 36.3360539773469 (the first res-
onance converged to double precision accuracy). For this energy, the
left and right-going components of ψ1 (i.e., ψ1+ and ψ1−) have essen-
tially the same amplitude. In this case, the WKB plus and minus waves
shown overlap perfectly. Note the upper channel resonant wavefunction
emerging from the Gaussian model background in the bottom panel. It
is well modeled by the WKB waves—minus on the left and plus on the
right

Fig. 11 As in Fig. 9 except E = 42.37954 (dotted lines), 42.37953
(dashed lines) and 42.3795273 (solid lines); i.e., three energies succes-
sively closer to the fourth resonance. The WKB waves are shown only
in the inset of the bottom panel

upper channel varies little (10−0.063 to 0.061 for E = 5–12.5,
respectively), while the amplitude of the upper channel wave-
function varies fivefold. It would seem the greater asymmetry
of the upper channel wavefunction at lower energies com-
pensates for the decreased amplitude of the non-adiabatic
transition contribution to the overall scattering.

Computations (not shown) of the above-barrier wavefunc-
tions (in ψ± representation) at energies above and below

Fig. 12 As in Fig. 8 except this is the E = 10 energy eigenfunction
for the tight avoided crossing potential A system C0 = 1

E = 25, and for both n = 1 and n = 2, indicate that above-
barrier reflection is enhanced by non-adiabatic transition.
Because the upper level wavefunction is essentially symmet-
ric in such cases (see the bottom panel of Fig. 9), this must be
an interference effect (as it is for resonances, see below). The
effect is much more sensitive to energy than the damping of
tunneling transmission probability, especially as the bottom
of the upper channel potential well is crossed. For exam-
ple, the factor by which above-barrier reflection is enhanced
increases from 10−0.02 to 100.7 as E varies from 25 to 30.

The resonance energies wavefunctions are quite unlike
neighboring energy wavefunctions which exhibit indiscern-
ible (as in Fig. 9 which does not separate right and left-going
contributions) exponentially small above-barrier reflection,
and near 100% transmission. Right at resonance energies,
reflection is near 100%. In the lower channel, the reflected
wave interferes with the incoming wave to produce the pat-
tern on the left—a small residual transmitted wave appears on
the right. In the upper channel, we see the Gaussian-weighted
imprint of the lower channel wavefunction (90◦ out of phase)
plus another shape visible in an interval about x = 0. The
latter shape is the pseudo-bound state in the upper channel
which gives rise to the resonance. It does not have a Gaussian
shape. Rather its tails, outside the classically allowed interval,
fall-off exponentially because the upper channel potential is
flat outside the interaction region. The tail on the right of the
resonant bound state in Fig.10 shows an asymptotic linear
(in the log plot) fall-off rather than the parabolic decay of the
Gaussian profile. Note that three nodes are evident in the res-
onant portion of the upper channel wavefunction of Fig. 11,
consistent with this being the third excited pseudo-bound
state of the upper channel potential. There are no correspond-
ing nodes in the ground state resonance of Fig. 10.
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Fig. 13 The three successively more resonant wavefunctions of
Fig. 11, shown here in ψ± representation—specifically, the right and
left-going components, ψ+ (x) (right panels) and ψ− (x) (left panels)
respectively, of the fourth resonant wavefunction. From least to most
resonant, the wavefunctions are shown as dotted, dashed and solid lines,

respectively—as in Fig. 11. Note that the three wavefunctions differ
only off the bottom of the graph in the top right panel. The WKB
waves, ϕ+ (x) and ϕ− (x) (in the right and left panels, respectively) are
shown as dot-dashed lines. The thin line in the bottom right panel is just
log10 |ψ2+ (x)|, from the bottom left panel, reflected through x = 0

It is instructive to further examine resonant wavefunc-
tions in adiabatic—i.e., ψ±—representation, as provided in
Fig. 13. Here, we see the right and left-going components of
ψ (x) = ψ+ (x) + ψ− (x) at the fourth resonance energy.
While the resonant portion of ψ (x), in the upper channel,
is symmetric about x = 0 (see lower panel Fig. 11), the
associated right and left-going components are not. This is
made clear by superimposing the resonant ψ+ (x) (thin line
in the bottom right panel) over the resonant ψ− (x) (thick
line). The right-going component is larger to the right of the
classically allowed interval. This portion of the wavefunc-
tion is exactly modeled by the WKB wavefunction, ϕ+ (x),
weighted to give the best match. The larger left portion of the
left-going component is exactly modeled in the same fash-
ion by ϕ− (x). This asymmetry is no surprise. Within the
classically allowed interval we have a standing wave—an
equal superposition of right and left-going waves (i.e., the two
WKB waves). Outside the classically allowed interval, only
the exponentially decaying WKB waves are seen—ϕ+ (x)
on the right and ϕ− (x) on the left. In any case, because
ϕ+ (x) and ϕ− (x) are right and left-going waves, respec-
tively, within the classically allowed region as the turning

point is crossed, it is convenient to think of these as right and
left-going waves for all x . The asymmetry of the resonant
states looks like a position-momentum asymmetry. It is as
though the left (right)-going component pushes further into
the left (right) unallowed region. Turning our attention to the
lower channel wavefunctions, we see non-adiabaticity at and
beyond the onset of the resonant wave. This non-adiabatic
component of the lower level wavefunction can be modeled
in terms of the upper channel wavefunction in a fashion sim-
ilar to how we modeled the non-adiabatic component of the
upper channel wavefunction in terms of the lower channel,
i.e., the lower channel wavefunction looks like the product
of a Gaussian (the potential coupling) and the upper channel
resonant wavewith a 90◦ phase shift. This is in contrast to
the adiabaticity of the lower channel wavefunction at non-
resonant energies (E = 10 and 25 in Figs. 8 and 9). For
E = 10, the right-going component (not shown) is adiabatic
across the interval, while the left-going component (also not
shown) is adiabatic only up to the first turning point in the
lower channel.

The most important consequence of the resonant states is
that they give rise to 100% reflectivity. The importance arises
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because of the possibility of constructing nano-devices incor-
porating switches based on 100% reflectivity at resonance
(see Chap. 12 of Ref. [29]). Near 100% reflectivity is also
seen at any above-barrier energy of the tight avoided cross-
ing case (see Fig. 6). The latter cases exhibit high reflectivity
because they are near the diabatic limit where transmission
is impossible—the incoming wave sees only a repulsive wall
on the right. The resonant wave results in 100% reflectivity
because, at resonance, the incoming wave splits into the res-
onant wave (in the upper channel) and a direct transmitting
wave in the lower channel, such that the indirect transmitting
wave emerging from the resonant state exactly cancels the
transmitting wave resulting directly from the incoming wave
to give zero net transmission (see Chap. 11 of Ref. [29]).
Note that the resonant wave leaks out of the upper channel
very slowly, equally in both directions, so that the amplitude
of the indirect transmitting and reflecting waves in the lower
channel is much smaller than the resonant wave. The ampli-
tude of the indirect transmitting and reflecting waves exactly
matches that of the incoming wave and the direct transmitting
wave, with the two transmitting waves out-of-phase, right at
resonance.

Interference between a non-resonant continuum and a
resonance gives rise to a Fano resonance [37,38] profile
which can exhibit zero net transmission.5 Nakamura has pro-
posed that a series of two-level avoided crossings, exhibiting
bands of 100% reflection, could be used as a switch through
control of the electron energy. Bands of reflection resonances
are analogous to the bands of transmission resonances (at
below barrier energies) of a series of barriers in a one-level
system. In Ref. [40], it is shown that to get true band of
near 100% transmission, one must bracket a series of identi-
cal barriers with smaller barriers—an anti-reflective coating.
Otherwise, a set of discrete narrow transmission resonances is
seen.

The non-resonant upper channel wavefunction (and
“non-resonant” portion of the upper channel wavefunction
at resonance) is a quandary for semiclassical mechanics. For
example, in Fig. 8, the WKB wavefunctionsϕ± (x) (weighted
to match ψ (x) at x = 0) in the upper channel are much
steeper than the observed Gaussian profile. The upper chan-
nel wavefunction is highly non-adiabatic, and as such much
broader than one might expect, i.e., naively assuming the
adiabaticity of the lower channel wavefunction applies to the
upper channel. In a strict sense, the Gaussian profile repre-
sents the failure of the semiclassical approximation. How-
ever, it is shown in Ref. [41] that the Gaussian profile is
recovered with a generalization of the WKB semiclassical
approximation. In particular, the non-resonant upper chan-
nel wavefunction arises from Z′ (x). As such, it is closely

5 For a recent observation of Fano resonance giving rise to zero net
transmission in mesoscopic transport, see Ref. [39].

Fig. 14 The upper channel wavefunctions for E = 10, with the Gauss-
ian potential coupling replaced by a constant (top panel), and a Lorentz-
ian of the same height and width (bottom two panels). C0 = 10 for both
potential models. Model upper channel wavefunctions are shown as
dot-dashed lines. In the top two panels, the model is just the product of
the lower channel wavefunction and the potential coupling (scaled to
give the best fit). In the bottom panel, the derivative of the Lorentzian
coupling (with width reduced to 2) is used instead of the Lorentzian
coupling (middle panel). WKB plus (dashed lines) and minus (dotted
lines) are shown for comparison

related to the profile of the potential coupling which is the
principle source of variation in the diabatic to adiabatic trans-
formation matrix, Z (x). Here, the relationship between the
potential coupling and the upper channel wavefunction is
investigated empirically by varying the functional form of the
coupling. Figure 14 shows the upper channel wavefunctions
for E = 10, with the Gaussian potential coupling replaced by
a Lorentzian of the same height and width (bottom two pan-
els), and a constant coupling (top panel). C0 = 10 for both
potential models. The three panels of Fig. 14 compare with
the bottom panel of Fig. 8 which shows the corresponding
Gaussian-coupling upper channel wavefunction. The model
for the upper channel shown in the top two panels of Fig. 14
(dot-dashed lines) is given by multiplying the lower chan-
nel wavefunction by the potential coupling—just like the
Gaussian model shown in Fig. 8. The Gaussian model is
a little narrower than the observed upper channel wavefunc-
tion. For constant and Lorentzian coupling (top two panels
of Fig. 14), the model provides a broader profile than the
observed wavefunctions, especially in the constant coupling
case. Of course, the model in the constant coupling case is
not a good model for Z′ (x). It is shown here for comparison
purposes only. The observed profile in the constant coupling
case is simple exponential decay to the left and right. In the
case of Lorentzian coupling, another model wavefunction is
considered—the absolute value of the derivative of the

123



402 Theor Chem Account (2008) 119:383–405

Lorentzian coupling (with the width reduced to 2, i.e., as
opposed to 2.5, the width of the coupling used in the wave-
function computation) multiplying the lower level wavefunc-
tion. This latter model, shown in the bottom panel, fits
exceptionally well.

5 Summary

A new numerical method, the shift equations iteration, is
introduced to solve n-level close coupled equations without
exponential instability. It is shown that exponential growth
accrued between grid points in the propagation is eliminated
in passing to the next grid point spacing. Stability is ensured if
there are sufficiently many grid points—around 20 in the two-
level avoided crossing systems considered above. The numer-
ical results show that SEI can be very efficient when com-
bined with an efficient underlying integrator. In fact, results
show that SEI simply reflects the error in the underlying inte-
grator—the error depends only on the total number of under-
lying integrator steps and not on the number of SEI grid
points. Rapid convergence is obtained with the symplectic
log-derivative method of Manolopoulos and Gray [25], based
on the McLachlan Atela [26] fifth order symplectic integra-
tor. Convergence obtained with SEI is comparable to that
obtained by Alexander et al. [6], using the Manolopoulos [10]
log-derivative method, and better than that obtained using the
original Johnson [7] log-derivative method. In addition to
providing numerical efficacy, SEI offers exponential-diver-
gence-free computation of transmission and reflection coeffi-
cients, and accurate wavefunctions for one or two-sided sys-
tems. It is not clear whether log-derivative methods can be
adapted to provide accurate wavefunctions, including closed
channel components, for general two-sided n-level systems.

SEI is interpreted as an effective propagation across the
interval, starting in the incoming channel, then traversing
back again. This effective propagation which suppresses

exponential instability is represented schematically in Figs. 1
and 2. SEI replaces a boundary value problem by an initial
value problem in the forward direction, followed by another
initial value problem in the backward direction. This is just
what was achieved by Ridley [42] in 1956. In fact, the key to
Ridley’s recast of the one-dimensional Schrödinger equation
is a matrix LU decomposition (in one of the formulations
described in Ref. [42]), as it is for ours.

Numerical results for two-level single avoided crossing
models show a range of phenomena. Most notably, reso-
nances in the upper channel well appear as negative peaks
in transmission probability with apparently zero probability
exactly at resonance, as seen by Zhu and Nakamura [27].
Also, at non-resonant as well as resonant energies, the upper
channel wavefunction exhibits a broad background distribu-
tion (in superposition with a resonant wave at resonant ener-
gies) which is empirically modeled as the product of the lower
channel wavefunction (phase shifted by 90◦) and the diabatic
potential coupling (or a variation thereof). The broad back-
ground distribution is not describable in terms of WKB func-
tions—it is much broader. The resonant wave, appearing only
near resonance energies, is so describable. The latter exhib-
its exponential decay in accordance with WKB functions to
the left and right of the upper channel classically allowed
interval. While the broad background distribution is gener-
ally small, it may in any case play an important role in the
interaction between neighboring avoided crossings because
of its breadth.

Acknowledgments The authors thank Reza R. Khorasani for help-
ful discussions on integrators, especially the Verlet and log-derivative
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Appendix: LU solution of the shift equations

Equation (16) is solved via LU decomposition of its block
quadridiagonal coefficient matrix, written here as

LU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−L(1)+−

−L(1)−− −�(1)−+

−L(2)++ −L(2)+−

−L(2)−+ −L(2)−− −�(2)−+

. . .
. . .

−L(N )++ −L(N )+−

−L(N )−+ −L(N )−− −�(N )−+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −U(1)−+

1 −U(1)+−

1 −U(2)−+

1 −U(2)+−

. . .
. . .

1 −U(N )−+

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−L(1)+− L(1)+−U(1)−+
−L(1)−− L(1)−−U(1)−+ −�

(1)
−+ �

(1)
−+U(1)+−

−L(2)++ L(2)++U(1)+− − L(2)+− L(2)+−U(2)−+
−L(2)−+ L(2)−+U(1)+− − L(2)−− L(2)−−U(2)−+ −�

(2)
−+ �

(2)
−+U(2)+−

. . .
. . .

. . .

. . .

. . .
. . .

−L(N )++ L(N )++U(N−1)
+− − L(N )+− L(N )+−U(N )−+

−L(N )−+ L(N )−+U(N−1)
+− − L(N )−− L(N )−−U(N )−+ −�

(N )
−+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Identifying the product of the L and U matrices with the original
coefficient matrix, starting at the top left corner, provides the
explicit form of the L and U blocks (see below). In terms of L
and U, the system of equations is solved in two parts. First we
solve

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−L(1)+−
−L(1)−− −�(1)−+

−L(2)++ −L(2)+−
−L(2)−+ −L(2)−− −�(2)−+

. . .
. . .

−L(N )++ −L(N )+−
−L(N )−+ −L(N )−− −�(N )−+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(0)−
b(1)+
b(1)−
b(2)+
...

b(N−1)
−
b(N )+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F(1)++c(0)+
F(1)−+ c(0)+

0
0
...

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (25)

then solve

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −U(1)−+
1 −U(1)+−

1 −U(2)−+
. . .

. . .

1 −U(N−1)
+−
1 −U(N )−+

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(0)−
c(1)+
c(1)−
c(2)+
...

c(N−1)
−
c(N )+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(0)−
b(1)+
b(1)−
b(2)+
...

b(N−1)
−
b(N )+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In practice, the L system of equations are solved concurrently
with the construction of the L and U components.

So far, the method is straightforward. However, follow-
ing the usual construction of the L and U components, U( j)

−+
blocks are given as the inverse of the L( j)

+− blocks. This is a
problem because the latter blocks are vanishingly small in the
asymptotic regions. They are effective propagators—closely
related to F( j)

+− (see Eq. (27) below)—mapping minus com-
ponents at x j−1 to plus components at x j . As such, they
vanish in asymptotic regions where there are no such tran-
sitions. U( j)

−+ is consequently ill defined, as is b( j)
− which is

expressed in terms of
(
L( j+1)

+−
)−1

following the usual pre-

scription for solving the system of equations via LU decom-
position. It is, however, possible to express the final solution,
c, only in terms of the + components, b( j)

+ , of the intermediate

solution and the blocks of L, i.e., with no reference to U( j)
−+.

The resulting solution to the system of equations provides
the promised numerically viable strategy, with the additional
advantage of a graphical interpretation of the solution as an
evolution across the interval and back.

With the conventions, L(0)±− = 0 and L(1)±+ = F(1)±+, the
equations for the blocks of L can be written concisely as

L( j)
±+ = F( j)

±+, j = 1, . . . , N , (26)

and

L( j)
±− = F( j)

±− + L( j)
±+U( j−1)

+−

= F( j)
±−+F( j)

±+L( j−1)
+−

(
L( j−1)

−−
)−1

, j =1, . . . , N . (27)

The second line of Eq. (27) follows from U( j)
+− =

(
�
( j)
−+

)−1
,

�
( j)
−+ = L( j)

−−U( j)
−+, U( j)

−+ =
(
L( j)

+−
)−1

and Eq. (26). These

equations show how the blocks of L can be viewed as effective
propagators (L-propagators) between neighboring points.
The mappings, L( j)

±+, from + components at x j−1 to ± com-

ponents at x j are just the elementary mappings, F( j)
±+. The

mappings, L( j)
±−, from − components have a term in addition

to the elementary mapping, F( j)
±−. The extra term corresponds

to
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L-propagation to − components at x j−2 followed succes-
sively by L-propagation to + components at x j−1 and
F-propagation to ± components at x j . The two terms in Eq.
(27) can be viewed as corresponding to two distinct path-
ways from − components at x j−1 to ± components at x j .
This interpretation is illustrated schematically in Fig. 1 which
depicts the L( j)

±− as solid arrows which map − components at
x j−1 (the solid square) to + and − components at x j (the top
and bottom open squares, respectively). Each of these map-
pings is constructed from two pathways depicted by dashed
lines—medium and short dashed arrows correspond to L( j)

−−
and L( j)

+− contributions, respectively. In each case there is a

direct path contribution—the F( j)
±−—and an indirect contri-

bution. The first two steps of the indirect contributions are
the same for L( j)

−− and L( j)
+−—they are indicated with long

dashed arrows. This shared portion of the indirect pathways

consists of the mappings,
(
L( j−1)

−−
)−1

and L( j−1)
+− , which are

in turn expressed in terms of direct and indirect contributions
in the previous iteration of Eq. (27).

The equations for the intermediate solution, b( j)
+ , can also

be written in concise fashion—via the convention, b(0)+ =
c(0)+ , the incoming seed wave on the left. Starting with

b( j)
+ = −

(
�
( j)
−+

)−1 [
L( j)
−−b( j−1)

− + L( j)
−+b( j−1)

+
]

= −L( j)
+−

[
b( j−1)
− +

(
L( j)
−−

)−1
L( j)
−+b( j−1)

+
]
, j = 1, . . . , N ,

and

b( j−1)
− = −

(
L( j)

+−
)−1

L( j)
++b( j−1)

+ , j = 1, . . . , N ,

we eliminate b( j−1)
− to get

b( j)
+ =

[
L( j)

++ − L( j)
+−

(
L( j)

−−
)−1

L( j)
−+

]
b( j−1)

+

=
[
F( j)

++ − L( j)
+−

(
L( j)

−−
)−1

F( j)
−+

]
b( j−1)

+ , j = 1, . . . , N .

(28)

The b( j)
+ emerge from successive plus to plus propagations

across the interval, starting with c(0)+ for j = 1. Each step

has two contributions, a plus to plus L-propagation of b( j−1)
+

from x j−1 to x j , and a three stage L-propagation mapping
plus at x j−1 to minus at x j , then to minus at x j−1 and finally
to plus at x j . The second contribution is subtracted from the
first. The second contribution can be viewed as the mapping
of minus components at x j−1 via minus to plus L-propaga-
tion. The minus components at x j−1 are chosen such that
their minus to minus L-propagation to x j cancels the plus to

minus L-propagation of b( j−1)
+ from x j−1 to x j .

We can now solve the equations for the c( j)
± . The associ-

ated equations are concisely expressed via

c( j)
+ = b( j)

+ + U( j)
+−c( j)

−

= b( j)
+ + L( j)

+−
(
L( j)

−−
)−1

c( j)
− , j = N , . . . , 1, (29)

and

c( j−1)
− = b( j−1)

− + U( j)
−+c( j)

+

=
(
L( j)

+−
)−1

[
−L( j)

++b( j−1)
+ + b( j)

+ + L( j)
+−

(
L( j)

−−
)−1

c( j)
−

]

=
(
L( j)

+−
)−1

[
−L( j)

++b( j−1)
+ +

[
L( j)

++−L( j)
+−

(
L( j)

−−
)−1

L( j)
−+

]

× b( j−1)
+ + L( j)

+−
(
L( j)

−−
)−1

c( j)
−

]

=
(
L( j)

−−
)−1 [

c( j)
− − F( j)

−+b( j−1)
+

]
, j = N , . . . , 1. (30)

Equation (29) shows the + components, c( j)
+ , of the energy

eigenfunction to consist of b( j)
+ plus a term corresponding to

− to − L-propagation of c( j)
− from x j to x j−1, followed by

− to + L-propagation back to x j . The boundary condition,

c(N )− = 0 allows Eq. (29) to be applied first for each j from N
down to 1. The transmission coefficients are consequently
contained in the bottom b+ block, b(N )+ ; i.e.,

T = c(N )+ = b(N )+ . (31)

The reflection coefficients appear as

R = c(0)− . (32)

The − components, c( j−1)
− , of the energy eigenfunction

correspond to successive L-propagations across the inter-
val from right to left. However, at each point, x j−1, a term
is subtracted out—specifically, the − components at x j−1,
mentioned above, which are such that their − to − L-prop-
agation to x j cancels the + to − L-propagation of b( j−1)

+
from x j−1 to x j . The propagation of b( j)

+ , c( j)
+ and c( j−1)

−
according to Eqs. (28), (29) and (30) is represented schemat-
ically in Fig. 2. System states appear as boxes, with named
states labeled. Each state (except the initial seed state, c(0)+ )
is a sum of contributions represented by arrows, labeled by
the associated mapping, pointing to the box. Dashed arrows
in this figure correspond to the identity mapping. Here we
see the solution of the Schrödinger equation depicted as a
propagation from left to right, starting with the seed state,
followed by propagation back to the left. The transmission
and reflection coefficients appear as end states on the right
and left, respectively.
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